

Brückentage Mathematik

Mit Differentialgleichungen Schwung in die Mathematik bringen Mathematik hilft gegen das Schleudern

24.09.2007 - HS-Fulda

Dipl.-Ing. (FH) Daniel Goldbach PD/EE

Tel.: 0661 / 6000 - 373

Fax.: 069 / 6000 - 1111213

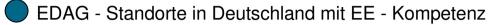
email: daniel.goldbach@edag.de

AGENDA

- Werdegang
- Vorstellung EDAG (Produktentwicklung Elektrik/Elektronik)
- Projekt w\u00e4hrend Doktorandenzeit (Gespannfahrverhaltensverbesserung)
 - Motivation
 - Modellierung
 - Umsetzung und Simulation
- Ergebnisse
 - Simulation Gespannverhalten unterhalb der kritischen Geschwindigkeit
 - Simulation Gespannverhalten oberhalb der kritischen Geschwindigkeit
 - Stabilisierung bei schneller Vorwärtsfahrt
 - Stabilisierung bei langsamer Rückwärtsfahrt (Stabilisierung stehendes Pendel)

Schulischer und beruflicher Werdegang

•	1984 - 1988	Mittelpunktschule Hilders/Rhön (Grundschule)
•	1988 - 1994	Ulstertalschule Hilders/Rhön (Gymnasium)
•	1994 - 1997	Freiherr vom Stein Schule Fulda (Gymnasium)
٠	1998 - 2002	Studium der Elektrotechnik, Fachrichtung Automatisierungstechnik in Fulda
٠	2002 - 2006	Doktorand in der Forschung der DaimlerChrysler AG in Kooperation mit der TU Ilmenau
·	Seit 2006	Entwicklungsingenieur bei EDAG Engineering und Design AG in Fulda


Weltweit – wo immer Sie uns brauchen

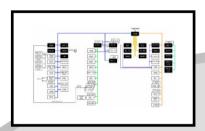
EDAG Standorte mit Elektrik / Elektronik Kompetenz

- Fulda
- Wolfsburg
- Rüsselsheim
- Ingolstadt
- Sindelfingen
- München (40 Mitarbeiter)
- Köln (Aufbau 2007)

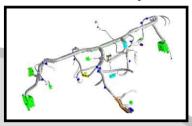
Mitarbeiter in Summe: 210 inkl. Extern (Stand: 15.05.2007)

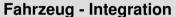
EDAG Internationale Standorte mit EE - Kompetenz

- Györ
- Paris
- Barcelona
- Lissabon
- Detroit
- Shanghai
- Fukuoka



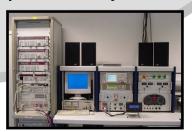
Prozesskette der EDAG Fahrzeug Elektrik / Elektronik




Systemspezifizierung / Architektur

Bordnetzentwicklung / Lieferanten Management / Licht / Wischer - Systeme

Prozessmanagement



Entwicklung von ECUs / Lieferanten Management

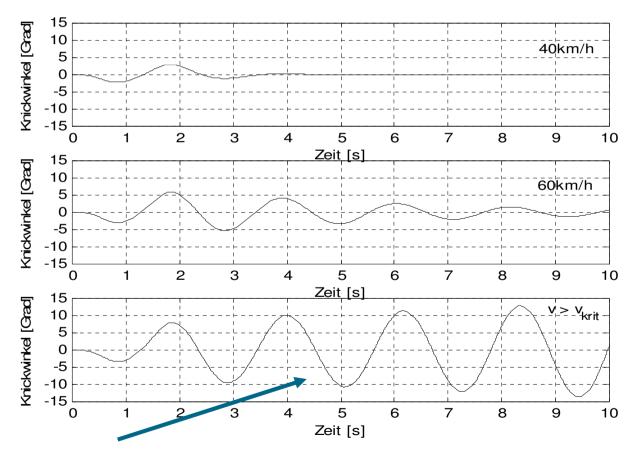
Komponenten-/Systemvalidierung

Tätigkeitsbereich (Doktorandenzeit)

- Verbesserung des Fahrverhaltens von Zugfahrzeug-Anhänger-Gespannen
 - Modellierung und Simulation dynamischer mechatronischer Systeme
 - Untersuchungen zur Fahrstabilität an Zugfahrzeug-Anhänger-Gespannen
 - Rechnergestützte Simulation des Gespannverhaltens
 - Auf Basis der Simulation Erstellung eines Prüfstandes und eine prototypischen Systems zur Erhöhung der Gespannstabilität
 - Entwicklung von Regelalgorithmen, Beobachtern und Algorithmen zur online Parameteridentifikation
 - Aufbau von Versuchsgespannen und Durchführung von Fahrversuchen
- Differentialgleichungen dienen als mathematisches Werkzeug zur Simulation dynamischen Verhaltens und als Entwicklungsbasis der in Fahrversuchen getesteten Algorithmen

Motivation

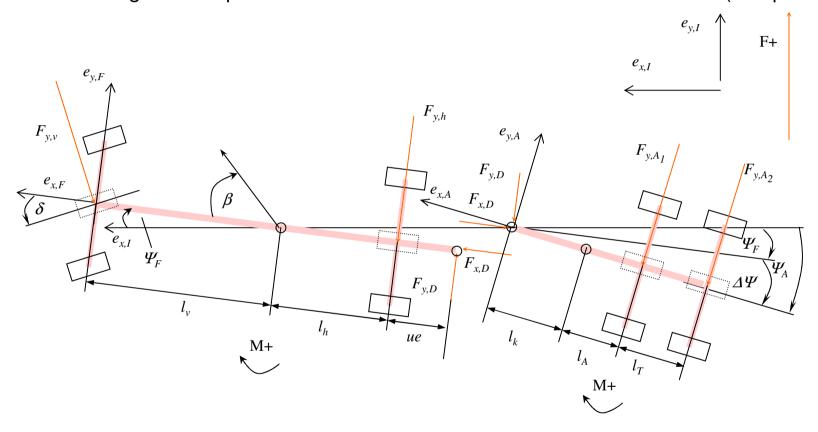
■ Warum Untersuchung der Gespannstabilität? -> Unfallgefahr



Wie kann die Fahrstabilität von Gespannen erhöht werden?

Problemstellung

- Beurteilung der Gespannstabilität
 - Darstellung des Gespannknickwinkelverlaufs abhängig von der Geschwindigkeit



Instabiles Gespann erkennbar an der aufklingenden Schwingung

Lösungsansatz (Ersatzmodell)

Berechnung des Gespannknickwinkels mit einem einfachen Ersatzmodell (Einspurmodell)

 Ableitung der linearisierten Bewegungsgleichungen aus den Kräfte- und Momentengleichgewichten

Lösungsansatz (mathematisches Modell)

Linearisierte Newton-Euler-Gleichungen

$$\begin{split} m_F \ddot{y}_{I,F} &= -F_{y,v} - F_{y,h} + F_{y,D} \\ I_F \ddot{\psi}_F &= -F_{y,v} l_v + F_{y,h} l_h - F_{y,D} \big(l_h + u \big) \\ m_A \ddot{y}_{I,A} &= -F_{y,D} - F_{y,A_1} - F_{y,A_2} \\ I_A \ddot{\psi}_A &= -F_{y,D} l_k + F_{y,A_1} l_A + F_{y,A_2} \big(l_A + l_T \big) \end{split}$$

Linearisiert kinematische Gleichungen

$$\ddot{y}_{I,F} = v(\dot{\beta} + \dot{\psi}_F)$$

$$\ddot{y}_{I,A} = v(\dot{\beta} + \dot{\psi}_F) - \ddot{\psi}_F (l_h + u + l_k) - \Delta \ddot{\mathcal{V}} l_k$$

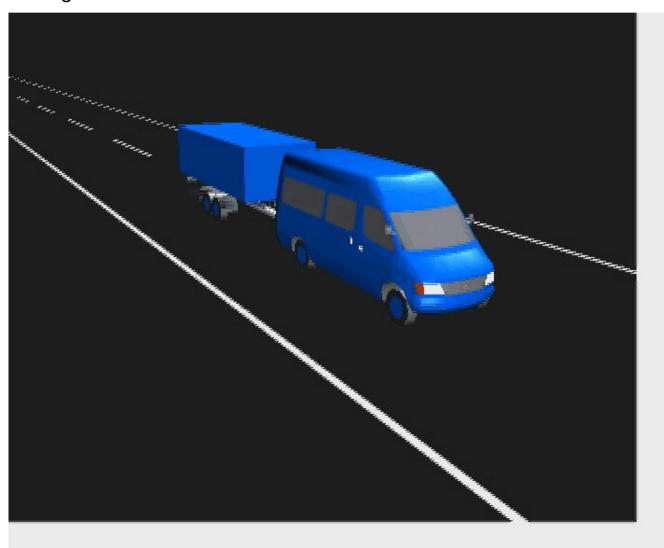
Linearisierte Kräftegleichungen

$$\begin{split} F_{y,v} &= C_{\alpha,v} \left[\beta + \frac{\dot{\psi}_F}{v} l_v - \delta \right] \\ F_{y,h} &= C_{\alpha,h} \left[\beta - \frac{\dot{\psi}_F}{v} l_h \right] \\ F_{y,A_1} &= C_{\alpha,A_1} \left[\beta - \frac{\dot{\psi}_F}{v} (l_h + u + l_k + l_A) + \frac{\Delta \dot{\psi}}{v} (l_k + l_A) - \Delta \psi \right] \\ F_{y,A_2} &= C_{\alpha,A_2} \left[\beta - \frac{\dot{\psi}_F}{v} (l_h + u + l_k + l_A) - \frac{\Delta \dot{\psi}}{v} (l_k + l_A + l_T) - \Delta \psi \right] \end{split}$$

Lösungsansatz (Rechnergestützte Algorithmenentwicklung und Simulation)

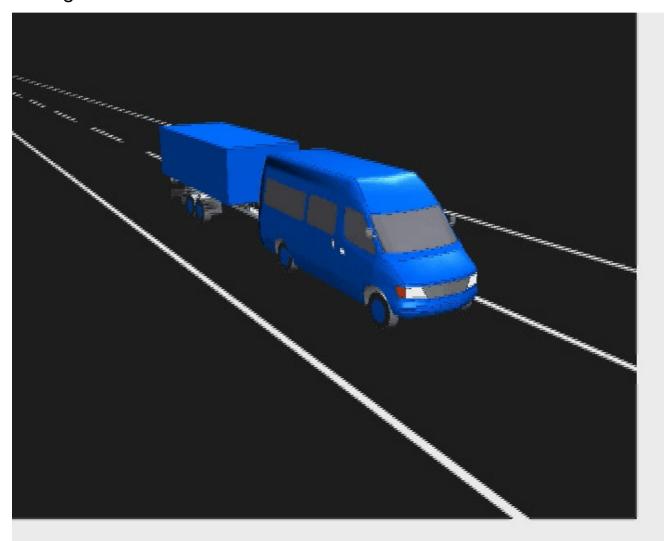
- Einsatz eines Analyse-, Simulations- und Entwicklungstools
 - Beispiel: MATLAB / SIMULINK
 - Lösung der Differentialgleichung und Berechnung des dynamischen Gespannverhaltens
 - Entwicklung der Regelungs-, Beobachtungs- und online
 Parameteridentifikationsalgorithmen basierend auf dem mathematischen Modell
 - Test der Regelungs-, Beobachtungs- und online Parameteridentifikationsalgorithmen in der Simulation

Lösungsansatz (Umsetzung in Simulation)



Berechnung mit MATLAB / SIMULINK

Lösungsansatz (Modellbasierende Animation (1))


 Animation des Gespannverhaltens nach Lenkwinkelimpulsanregung mit niedriger Geschwindigkeit

Lösungsansatz (Modellbasierende Animation (2))

 Animation des Gespannverhaltens nach Lenkwinkelimpulsanregung mit hoher Geschwindigkeit

Ergebnisse (Stabilisierung Vorwärtsfahrt)

Gespann bei schneller Vorwärtsfahrt ohne und mit stabilisierendem Eingriff

Gespann mit konventioneller AHK

Lenkimpuls bei Geradeausfahrt $(v \approx 75 \text{km/h})$

Gespann: SprinterT1N (3,5m Radstand, unbeladen ca. 2,4t)
Anhänger (voll beladen ca. 3,5t)

Ergebnisse (Stabilisierung Rückwärtsfahrt)

Gespann bei langsamer Rückwärtsfahrt mit stabilisierendem Eingriff

Vielen Dank für die Aufmerksamkeit!

