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Abstract: Which Software Reliability Engineering (SRE) methods should be ap-
plied during the various phases of the lifecycle of a product? The answer given here 
centres on learning from errors. The classification and evaluation of methods is 
strictly based on causal analyses of disasters, accidents and incidents with undesired 
outcome. The lifecycle model of IEC Standard 61508 has been adopted as a classi-
fication scheme. A couple of examples are given. The SRE methods considered here 
are those of IEC 61508. These methods are dealing with software reliability as well 
as with the production of highly reliable software. As an example of some more re-
cent proposals Extreme Programming (XP) has been included. 

Introduction 
The rules and the timely processing order of Natural Software Engineering (NSE) I dis-
covered by watching my students during a programming course in November 2003:  

1. In the very moment you have a faint idea of what your are supposed to do start cod-
ing. This is called realisation. 

2. Derive an excerpt from your program. This results in your concept and design. 

3. Then write down the specification and define all surprising program properties (heart-
lessly called bugs) to be features. 

4. Convince your customer (the instructor’s role) of what you are able to deliver is what 
he truly wanted. This challenging task is called requirements engineering. 

Indeed, this is the natural way: The scheme rests on firm psychological and sociological 
grounds. For, what your are paid for is real work. Coding is to come first. Whereas ac-
tivities like haggling over requirements, verification and documentation are introducing 
delays. And they are real pains. In favour of keeping the time schedule and comfort these 
activities should be skipped or given low priorities. 

On the other hand, our experience points into another direction: Disasters happen be-
cause of a lack of documentation, badly thought-out specifications, superficial tests and 
left off verifications. Investigating and analysing the disasters of the past makes the 
strongest case in favour of the not so natural and painful software engineering methods. 

This paper deals with software reliability engineering (SRE) methods. They are more or 
less painful, and they are more or less useful. The question to be answered is: When does 
it pay to use them? 

The one who has the task of building and maintaining software of automation and safety 
systems faces a plentiful variety of techniques for software construction and evaluation. 
Let alone the IEC Standard 61508 lists 66 techniques aiming at software safety integrity - 
not taken into account all the existing variants of the methods [1, part 7, annex B]. 



 

In this situation some guidance is needed. And such will be offered here. This guide 
comprises three components: 

1. A lifecycle model serves as the basic classification scheme of SRE methods and tech-
niques. 

2. Primary causes of incidents or accidents will be identified by causal analysis. Preven-
tive measures are identified. 

3. The primary causes can be attributed to lifecycle phases, and this will entail a classi-
fication of SRE methods suitable for prevention. 

The resulting classification (or taxonomy) of SRE methods should help starting up SRE 
activities and to bring into focus the most effective methods and techniques for solving 
the actual problems (fig. 1). 

The framework of the following considerations is given by the IEC Standard 61508 ap-
plicable to electrical, electronic and programmable electronic (E/E/PES) safety-related 

systems [1]. 

For these systems a safety plan shall 
be prepared at the outset and this 
plan shall be updated during the 
entire safety lifecycle. This safety 
plan shall specify “procedures which 
ensure that hazardous incidents or 
incidents with potential to create 
hazards are analysed and recom-
mendations made such that the 
probability of repeat occurrence is 
minimised” [1, part 1, 6.2.2k]. This 
imperative says how the learning 
from errors shall be institutional-
ised, and it also draws the lines 
along which this paper will evolve. 

Root Cause Analysis 

A Three-level Model of Causality 
There are different views on the causes of accidents and incidents. In this paper three 
levels of causal analysis will be distinguished, fig. 2: 

1. Analysis of Immediate Causes. This analysis is based on the „logic of causality“: An 
(immediate) cause can be conceived to be an element of a set of causes, each of them 
necessary and all of them sufficient to cause the undesired event or accident [3, p. 
43]. This level of causal analysis concerns the technical blow by blow, the chain of 
events leading to the accident. The most predominant causes will be called primary 
causes. In the following causes with some relevance to the software of automation 
and safety systems will mainly be considered. 
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Fig. 1 The proposed procedure 



 

2. Detection of Errors. A cause may be an error, or may not. An error may be a cause, 
or may not. Causal analysis can be used for identifying possible causes. Beyond that a 
normative model is needed to distinguish errors from „normal“ causes [2]. 

3. Root Cause Analy-
sis. It is worth-
while to find out 
the general mecha-
nisms leading to an 
error. Such general 
mechanisms have 
been identified and 
described by the 
technical, psycho-
logical and socio-
logical sciences. 
Root cause analy-
sis aims at maxi-
mum learning from 
errors through 
generalization [3, 
chapter 3 and 4]. 

The Lifecycle Classification Scheme 
The classification scheme of table 1 has been devised in accordance with the lifecycle 
model given in IEC Standard 
61508 [1, part 1, chapter 7] and it is 
similar to the one from the “Out of 
Control” publication of the Health 
and Safety Executive (UK) [4]. 

This classification scheme will be 
used to classify the root causes of 
incidents/accidents and  preventive 
methods as well. The classification 
procedure will be carried out for a 
number of cases with undesired 
outcome. The case descriptions are 
based on actual accidents or inci-
dents. In this paper all these cases 
are called incidents. 

Every incident under consideration 
will be described and analysed in 
compliance with the following 
scheme. 

Title: Denomination of the accident or

UUnnddeessiirreedd  EEvveenntt  
((AAcccciiddeenntt))  

IImmmmeeddiiaattee CCaauusseess 

EErrrroorrss NNoorrmmaallccyy  

IInnccoonnssppiiccuuoouuss  
ccoonnsseeqquueenncceess  

RRoooott  CCaauusseess  PPssyycchhoollooggiiccaall  CCaauusseess  

SSoocciioollooggiiccaall  CCaauusseess  TTeecchhnniiccaall  CCaauusseess  

Fig. 2 Causes and Errors 
Table 1 Classification Scheme (Lifecycle) 

Phase Description 

1 Specification  
- Functional Requirements 
- Safety Integrity Requirements 

2 Realisation 
- Design 
- Implementation (Coding) 
- Validation and Verification 

3 Installation and Commissioning 

4 Operation and Maintenance 

5 Changes after Commissioning 
 incident. 

- Modification, Reuse and Retrofit 
- Decommissioning 



 

Source: A bibliography leading to more detailed descriptions of the incident and to 
further references. 

Setting: Short description of the scene (system and environment) where the incident 
occurred. 

Course of Events: Short description of the chain of events leading to the undesired 
consequences. 

Root Cause(s): The result of a causal analysis and record of the main arguments: 
Identification of a primary cause and demonstration that it is indeed an error. (Because 
we are aiming at learning from errors only incidents resulting from errors are worthwhile 
to be considered.) Description of the root cause(s) of the error. 

Preventive Method(s): List of methods applicable to the prevention of errors identified 
by root cause analysis. 

Classification: Naming the  lifecycle phase to which the primary cause can be assigned. 

The HSE publication [4] reports on a study during which 34 accidents and incidents due 
to control system failures have been investigated. For every incident a primary cause has 
been identified and 
attributed to one of 
the lifecycle phases. 
The main result of 
the study is given in 
fig. 3. 

Most causes of un-
desired events origi-
nate from wrong 
specifications. 
Therefore we will at 
first clarify the term 
“Specification Er-
ror”. 

The Meaning of „Specification Error“  
Causes are identified a posteriori - i.e. after an undesired event has occurred - on the 
basis of purely formal principles. 

Knowing the causes as such is of little help to us. Only a cause classified as an error 
offers a chance of learning therefrom. To find out whether a given cause (what has hap-
pened) can be conceived to be an error we are in need of a normative model (of what 
should have happened). By definition errors are deviations from a norm or a normative 
model. 

The specification serves as a yardstick and defines the correct behaviour of the system, 
and from this we do know what an error is [5]. Specifications are some kind of norm with 
respect to all the following lifecycle phases, the specification phase being excluded. 

Specification errors are nonexistent within the scope of a project and its lifecycle phases. 
The specification complies with itself, and consequently cannot offend against itself. 
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Fig. 3 Results of causal analysis (HSE-study, 34 incidents) 



 

Thus we are in need of an extension of the notion of “error” if we want to speak of speci-
fication errors. 

Certainly, there is a goal quite from the outset of a project: To make the risk accompany-
ing the use of the system as low as reasonably practicable. But from this general goal the 
(safety) functions requirements specification and the (safety) integrity requirements 
specifications are to be developed and allocated to the system’s components. This de-
composition and allocation process cannot be based solely on some “super norms”. Ex-
perience and creativity are indispensable ingredients. 

Safety related specification errors come into existence through accidents or incidents 
with undesired outcome: A root cause analysis may lead to corrections of the specifica-
tion of the system, constituting the norm of a possible subsequent lifecycle aiming at a 
safer system. 

Specifications are thus subject to evolution. And the new specification taken as a norm is 
a refutation of the older one. In this sense we are entitled to speak of specification errors. 
Specification errors are errors a posteriori. 

The evolution of specifications and systems is analogous to evolutionary processes in 
biology, science, and society. Let us take a very long neck as part of the currently valid 
“specification of the giraffe”. Predecessors of the giraffe where assumedly endowed with 
shorter necks. In hindsight this can be understood to be an error. According to Karl 
Raimund Popper evolution “should be visualized as progressing from problems to prob-
lems” [6, p. 222].  

Specification errors come into existence by hindsight. And this is why specification er-
rors cannot be taken into account during reliability and safety assessment activities. 

Incidents: Analysis and Classification 
This section presents two case studies: The Royal Majesty Accident and the Ariane 5 
Maiden Flight Failure. They are given as examples to show how the proposed procedure 
shall be applied. The root causes and the preventive methods derived from these cases 
are assigned to the lifecycle phases Realisation and Changes after Commissioning.  

Table 2 summarizes the classification of methods. It contains the methods derived from 
the accidents considered below and additionally those derived from the case studies 1 
(Specification), 8 (Installation and Commissioning), and 9 (Operation and Maintenance) 
given in the HSE publication [4, Section 3].  

Further material on control system failures can be found in [11] and [12]. Incidents re-
lated to computers are being discussed in the online forum „Computer Risks“, edited by 
Peter G. Neuman [7]. 

The Royal Majesty Accident 
Source: Marine accident report of the National Transportation Safety Board (NTSB) on 
the grounding of the Royal Majesty in 1995 [8]. The description of the event and causal 
analysis is based on [9]. 

Setting: The cruise ship Royal Majesty was equipped with an integrated bridge system 
consisting of an autopilot obtaining position data from a GPS unit.  



 

Course of Events: Shortly after departure from St. George’s, Bermuda, on June 9, 1995, 
the GPS switched to dead-reckoning mode changing the status bit from valid to invalid to 
indicate that valid position data is no longer being transmitted. The autopilot did not 
recognise the GPS’ dead-reckoning mode and accepted the data as valid. The personnel 
having the watch relied on the position data of the GPS. The vessel grounded on a shoal. 
The GPS was checked after the grounding. The GPS was in error by at least 15 nautical 
miles. 

Root Cause(s): The antenna cable of the GPS was routed in such a way that it could be 
kicked or tripped over. Post-accidental examination of the GPS found the antenna cable 
of the GPS had separated from the factory connection at the antenna. Subsequently the 
system has inappropriately dealt with this failure due to a communication problem 
between the GPS and the autopilot. The autopilot’s interface has been designed badly 
such that not all the failure indications generated by the GPS are recognized. Because our 
focus is on the automation system this inadequate design is thought a primary cause and 
a design error. 

What are the deeper causes of this error? The designer of the autopilot expected the GPS 
to indicate invalid data by (a) nulled position data or (b) halted transmission or (c) no 
changes in the position. Whereas the GPS used the dead reckoning mode and a 
valid/invalid bit to indicate invalid position data. Since the designers did not expect the 
GPS to send position data based on anything other than GPS satellite data they chose not 
to check the valid/invalid bits in the data stream. 

To put it more schematically: Let A be the proposition “GPS sends nulled position data 
or no changes in the position; or transmission is halted” and let B stand for “GPS 
indicates invalid data”. Let C be the proposition “GPS sends invalid data”. Then it can be 
concluded that “from A follows C”. The designer may have lost the other possibility 
(from B follows C) out of sight and may have generalized his knowledge (from A follows 
C) to conclude: from not A follows not C. This failure to apply modus tollens in 
conjunction with the mind set effect is a thinking trap well known from cognitive 
psychology. This thinking trap belongs to the larger class of  inductive reasoning errors 
[10]. 

Preventive Method(s): Communication problems can be solved by the modular 
approach, especially by treating interface descriptions as specifications. For outermost 
exactness standard mathematical and logical notation should be used. The specification 
has to be documented for use in the following lifecycle phases, especially the fifth phase 
(changes after commissioning: modification and reuse). Failure mode and effect 
analysis, FMEA, is an effective means to overcome the mind set effect and the failure to 
apply modus tollens. By this method the attention will be drawn to all possible deviations 
from normal behaviour. 

Classification: Realisation (design, implementation and verification). 

The Ariane 5 Maiden Flight Failure 
Source: The course of events as well as the causal analysis is taken from the report by the 
Inquiry Board on the ARIANE 5 - Flight 501 Failure [14]. 

Setting: The attitude of the Ariane 5 launcher and its movement in space are measured by 
an inertial reference system. 



 

Course of Events: On 4. June 1996 the maiden flight of the Ariane 5 launcher ended in a 
failure about 30 seconds after lift-off. The initiating event has been an unexpected high 
value of a horizontal velocity sensor which caused overflow of an internal variable of the 
on-board computer. This variable was one of three variables within the respective 
software module left unprotected, although comparable variables in the same place in the 
code were protected from causing an operand error. The design of the Ariane 5 inertial 
reference system is practically the same as that of the Ariane 4 system. The decision to 
protect certain variables but not others was that they were either physically limited or that 
there was a large safety margin. Ariane 5 trajectory data were not included in the 
requirements and specification of the inertial reference system. The value of the variable 
was much higher than expected because the early part of the trajectory of Ariane 5 differs 
from that of the Ariane 4 and results in considerably higher horizontal velocity values. 

Root Cause(s): It seemed not wise to make changes in software which worked well on 
Ariane 4. The engineer’s belief that „change is bad“ is thought to be a root cause of the 
accident. 

Preventive Method(s):  Formulation and documentation of specifications of all modules 
using standard mathematical notation. Before reuse: interface analysis (rigorous check 
whether all the actual requirements are met by the specification of the module under 
consideration), boundary value analysis and equivalence classes testing. 

Classification: Changes after Commissioning (Modification and Reuse). 

Unconventional methods: Extreme Programming (XP) 
IEC 61508 [1] draws on today’s software engineering. This may be entailing bureauc-
racy, tedious procedures and inflexibility with respect to changing requirements. To 
come up against the drawbacks of standard software engineering a group of computer 
scientists formulated the “Manifesto of Agile Software Development” [15]. 

In accordance with these new principles Kent Beck and his colleges and disciples have 
pushed forward a „new“ software development methodology: Extreme Programming or 
XP [16]. This methodology is based partly on common practices (and looks in some 
respect like Natural Software Engineering). 

Goal: XP addresses the risks of software development: hidden schedule slips, changing 
requirements, fluctuating programming team, and increasing defect rate. The latter results 
from continued attempts to fix errors and enhance functionality. These attempts let the 
system’s structure decay. It becomes increasingly difficult to change anything without 
adding more errors than can be fixed [17].  

Method: Due to modern software technologies the cost of program modification does no 
longer increase exponentially over time. Changes in software can be undertaken through-
out the production process. And these changes are entailing only modest cost. This 
makes it possible to start with small initial investments and a system design of utter sim-
plicity. From this starting point the software evolves incrementally. The customer takes 
part in this process and is allowed to develop his requirements further. The system’s 
structure undergoes adequate changes by frequent refactoring activies. 



 

There is no specification. Story cards are used instead to fix scenarios and use cases 
thought out by the customer. And with the help of a dedicated tester the customer writes 
the test cases, story by story. 

Central features of XP are: 

1. Test driven development: There is no specification. If the tests run, you are done for 
the moment. “When you can’t think of any test to write that might break, you are 
completely done” [16, p. 45]. 

2. Pair programming: All production code is written by two programmers looking at 
one machine, one of them thinking more stategically.  

3. Collective Ownership: All persons are continually changing their roles. Everybody 
takes responsibility for the whole of the system. 

4. Communication by code: Following coding standards and striving for simplicity of 
design results in readable programs. Code is used to communicate clearly and con-
cisely thus reducing the need of extra documentation. 

5. Iterations: The software evolves iteratively. Each iteration consists of a series of 
interwoven activities: Exploration (eliciting requirements by means of story cards), 
planning (customers and programmers agree on a date by which the smallest, most 
valuable set of stories will be done), writing test cases, coding and testing.  

Lifecycle model and classification. XP extends over the whole lifecycle, and the underly-
ing lifecycle model differs considerably from the one of IEC 61508. There are four 
phases of a project, called preproduction (which is seen to be “an unnatural state for a 
system and should be gotten out of the way as quickly as possible” [16, p. 131]), produc-
tionizing (certifying the software is ready to go into production), maintenance (“the nor-
mal state of an XP project”, [16, p. 135]), and death. During the entire lifetime the soft-
ware development is done by iterations. Only the pace of evolution differs from phase to 
phase. 

Discussion. Root cause analysis underscores the importance of specifications and docu-
mentation to safety related systems. In XP specifications are not present and documenta-
tion is undervalued. Extreme programming does not conform to the lifecycle model of 
IEC 61508. And it is not meant to do so. Therefore the XP cannot be classified within the 
proposed scheme. Some elements of XP like pair programming, collective ownership, 
and communication by code should be examined more closely to find out their possible 
contribution to the development of safety related software. 

Conclusions and Outlook 
The proposed procedure identifies the most effective SRE methods to be applied during 
the various lifecycle phases. This is done by root cause analyses applied to the disasters 
of the past. The procedure has been applied to a couple of incidents. This resulted in a 
preliminary selection and classification of SRE methods. Further work has to be done to 
further substantiate the result and to get a more comprehensive table of methods and their 
allocation to the lifecycle phases. 



 

Table 2 Classification of methods derived from causal analysis. 
([B...] is shorthand of [1, part 7, annex B...].)  

Lifecycle Phase Method 
1 Specification 

Functional Require-
ments, Safety Integ-
rity Requirements 

Hazards and Operability Analysis (HAZOP) [B34] 
Fault Tree Analysis (FTA) [B28] 
Event Tree Analysis (ETA) [B23] 

2.1 Realisation 
Design 

Modular approach: hierarchical decomposition, infor-
mation hiding [B43], [13] 

2.2 Realisation 
Implementation (Cod-
ing) 

Modular approach: treating interface descriptions as 
specifications, use of mathematical and logical notation 
for outermost exactness, documentation [B43], [13] 

2.3 Realisation 
Validation and Verifi-
cation 

Interface analysis: rigorous module check whether all 
requirements are met by the specification [3] 
Failure Mode and Effect Analysis (FMEA) [B26] 
Boundary value analysis [B4] 
Equivalence classes and input partition testing [B19] 

3 Installation and 
Commissioning 

Inspection and functional tests need to be specified as 
explicitly as practicable 

4 Operation and Main-
tenance 

Design for Maintenance [4, p. 27] 

5 Changes after Com-
missioning 
Modification, Reuse 
and Retrofit 

The same as during the realisation phase (design, 
implementation, validation and verification) 
Regression test 
Interface analysis 
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