Umweltsimulation mit Tabellenkalkulation

Von der Zinseszinsrechnung zur Populationsdynamik

Wer behauptet, der Mensch zerstöre seine Lebensgrundlagen durch die egoistische Verfolgung seiner Interessen, wird allgemeine Zustimmung ernten. Formulieren wir etwas genauer: "Wenn wir eine Population von wildlebenden Tieren - z. B. Großwale - maximal ausbeuten, gefährden wir deren Bestand". Auch dieser Satz wird wohl meist bejaht. Wir wollen ihn mit Hilfe einer Simulation überprüfen.

Das Grundmodell: Das Wachstumsmodell für die Population werden wir in Anlehnung an die Zinseszinsrechnung entwickeln (Wilson/Bossert, 1973). N(t) möge das Guthaben im Jahre t bezeichnen. Mit r bezeichnen wir die Zuwachsrate (den Zinssatz je Jahr), angegeben in Prozent. Für das Wachstum des Guthabens vom Jahr t bis zu Folgejahr t+1 ergibt sich, solange kein Geld entnommen wird, das folgende einfache Wachstumsgesetz

N(t+1) - N(t) = r N(t)

In Worten: Bestandsänderung = Zuwachsrate · Bestand.

Wir setzen den Anfangsbestand N(0) als bekannt voraus. Wir setzen im Wachstumsgesetz t=0 und setzen den Anfangsbestand ein. Es ergibt sich eine Gleichung für N(1). Jetzt wiederholen wir das für t=1 und erhalten N(2), usw. Das Wachstumsgesetz liefert uns also Schritt für Schritt die Folge der Bestandswerte.

Variable Schrittweite: Es ist nicht sinnvoll, stets eine bestimmte vorgegebene Periodendauer zu Grunde zu legen. Zinsen werden ja nicht ausschließlich im Jahresrhythmus gutgeschrieben, sondern auch in kürzeren Zeitabschnitten. Stattdessen wird man den Zinssatz proportional zur Länge des Zeitschritts h ansetzen; h·r ist dann der Zinssatz und r die auf die Zeiteinheit bezogene Zuwachsrate. Nehmen wir eine Zuwachsrate von r = 6 %/Jahr. Dann ergibt sich der Zinssatz für einen Monat, also h = 1/12 Jahr, zu h·r = 1/12 · 6 % = 0.5 %. Die Wachstumsgleichung sieht in diesem verallgemeinerten Fall so aus

N(t+h) = N(t) + h·r·N(t)

Dementsprechend ist jetzt die Zeitvariable t nicht mehr notwendigerweise ganzzahlig.

Diese Gleichung lässt sich in die Form (N(t+h) - N(t))/h = r·N(t) bringen. Der Differenzenquotient auf der linken Seite strebt mit kleiner werdendem h gegen die Wachstumsgeschwindigkeit dN(t)/dt, die manchmal auch in Punktnotation geschrieben wird:  oder auch nur . Damit erhalten wir das Wachstumsgesetz in der kontinuierlichen Form:

.

Näherungslösungen für kontinuierlicher Systeme durch Diskretisierung

Das Wachstumsgesetz des kontinuierlichen Systems haben wir also in folgende Gestalt gebracht:

dz(t)/dt = f(z(t)).

Diese Gleichung nennen wir Systemgleichung oder auch Übergangsbeziehung; f heißt Übergangsfunktion. Im vorliegenden Fall ist einfach N(t) = z(t) zu setzen. (Im allgemeinen Fall handelt es sich bei z(t) um einen mehrdimensionalen Zustandsvektor.) Der Anfangswert z(0) der Zustandsgröße ist vorgegeben.

Die Aufgabe, die Zeitfunktion z(t) so zu bestimmen, dass sie der Übergangsbeziehung und der Anfangsbedingung genügt, wird auch Anfangswertproblem genannt.

Für die (näherungsweise) Lösung dieses Anfangswertproblems machen wir einfach den oben durchgeführten Schritt der Ersetzung des Differenzenquotienten (z(t+h)- z(t))/h durch den Differentialquotienten dz(t)/dt wieder rückgängig. Dieser Schritt heißt Diskretisierung.

Bewirtschaftete Population

Wenden wir uns nun wieder der ursprünglichen Aufgabe zu: Simulation des Wachstumsgesetzes einer freilebenden bejagten (bewirtschafteten) Population.

Wir nehmen der Einfachheit halber an, die fragliche Population unterliege einem einfachen Gesetz des begrenzten Wachstums. Der anfangs kleine Bestand N möge jährlich um einen bestimmten Prozentsatz - sagen wir = 5 % - wachsen. Je größer die Population ist, umso mehr verringert sich diese Zuwachsrate, weil nicht genug Futter für den Nachwuchs da ist.

 

A

B

C

1

Konstantendefinitionsteil

 

 

2

r=

0.05

 

3

h=

0.5

 

4

K=

100

 

5

 

 

 

6

Ablauftabelle

 

 

7

t

N

dN/dt

8

0

2

=$B$2*(1-B8/$B$4)*B8

9

=A8+$B$3

=B8+B$3*C8

=$B$2*(1-B9/$B$4)*B9

10

=A9+$B$3

=B9+B$3*C9

=$B$2*(1-B10/$B$4)*B10

11

=A10+$B$3

=B10+B$3*C10

=$B$2*(1-B11/$B$4)*B11

Arbeitsblatt des Modells für begrenztes Wachstum

 

Wir müssen also mit einer bestandsabhängigen Zuwachsrate rechnen. Diese Zuwachsrate geht gegen null, wenn sich die Größe N der Population einem Wert nähert, der von der Umwelt gerade noch verkraftet wird. Dieser Wert wird als Kapazität bezeichnet und erhält das Symbol K. Wir setzen hier einmal K=100. Ein für unsere Zwecke brauchbarer Ansatz für die Zuwachsrate ist r×(1-N/K). Das Wachstumsgesetz sieht jetzt so aus

.

Um eine Lösung dieser Systemgleichung zu erhalten, wenden wir das oben beschriebene Näherungsverfahren nach Euler-Cauchy an. Tabelle 1 ist das Arbeitsblatt dieses Modells. Als Anfangswert wurde N(0) = 2 gewählt. Das Wachstum der Population über einen Zeitraum von 150 Jahren ist im folgenden Bild als dunkle Kurve dargestellt. Die Steigung dieser Kurve ist gleich der Wachstumsgeschwindigkeit, also gleich dem Zuwachs des Bestands je Zeiteinheit (helle Kurve).

 

Anfangs ist, wegen der kleinen Population, die Wachstumsgeschwindigkeit klein. Da die Kapazitätsgrenze noch fern ist, wird das Wachstum nahezu auschließlich durch die Wachstumsrate r regiert. Die Wachstumsgeschwindigkeit steigt mit zunehmender Population an. Ihr Maximum erreicht die Wachstumsgeschwindigkeit, sobald die Population halb so groß wie die Kapazität der Umwelt ist: N = K/2 = 50. Danach geht die Wachstumsgeschwindigkeit wegen der abnehmenden Zuwachsrate zurück.

In der Populationsdynamik spricht man auch von K- bzw. r-Wachstum, je nachdem, ob sich eine Population an der Kapazitätsgrenze befindet oder nicht. Die an diese Bereiche angepassten Überlebensstrategien von Populationen unterscheiden sich grundlegend. Beim K-Strategen kommt es nicht so sehr darauf an, möglichst viele Nachkommen zu haben, sondern darauf, dass deren Überlebens- und Konkurrenzfähigkeit besonders hoch ist.

Wer eine maximale Ausbeute der bejagten Population anstrebt, wird die Population bis auf den halben Kapaziätswert anwachsen lassen; denn dort erreicht sie die maximale Wachstumsgeschwindigkeit. Er wird sie dann durch Bejagen auf diesem Bestand halten und im Mittel 1.25 Einheiten je Zeiteinheit jagen können.

Das Streben nach maximalem Ertrag sichert demzufolge einen ausreichenden Bestand der bejagten Population - entgegen der zunächst geäußerten Meinung.

Wenn wir - ganz Egoisten - den langfristig haltbaren Höchstertrag anstreben, müssen wir nach dem Prinzip der Nachhaltigkeit (Sustainability) wirtschaften. Das nützt uns und der Umwelt. Dass wir das oft nicht tun, liegt daran, dass viele Jäger um die Beute konkurrieren und dass jeder einen möglichst großen Teil des "Kuchens" abkriegen will. Es ist unsere Unfähigkeit, die sogenannte Tragödie der Gemeingüter (Tragedy of the Commons) zu verhindern, die uns in Schwierigkeiten bringt. Dieser wichtige Begriff ist von Garret Hardin und wird u. a. in Global 2000 genauer erläutert. Der eng- und kurzsichtige Egoist macht sich und anderen Probleme - nicht dagegen der "Weitwinkelegoist".

Fazit: Egoistische Ausbeutung einer Population führt keineswegs zu deren Gefährdung, vorausgesetzt, wir handeln nach dem Grundsatz vom "langfristig haltbaren Höchstertrag". Nicht unser Egoismus ist das Problem, sondern unsere Dummheit.

 

Zurück zur Gliederung

 

© Timm Grams, 6.7.1999 (korr.: 19.12.07)